Fig. 1. A circular representation of the R. magnifica genome. The innermost circle highlights genes of special interest: cbb (Calvin-Benson-Bassham cycle, red), sox (sulfur oxidation, green), dsr (dissimilatory sulfite reductase, blue), and rnf (NADH dehydrogenase). The second and third circles show GC skew and %G+C, respectively. The distribution of genes is depicted on the two outer rings (fourth and fifth, forward and reverse, respectively) colored by role category. [View Larger Version of this Image (273K JPEG file)]
The Calyptogena magnifica (Bivalvia: Vesicomyidae) symbiont, Candidatus Ruthia magnifica, is the first intracellular sulfur-oxidizing endosymbiont to have its genome sequenced, revealing a suite of metabolic capabilities. The genome encodes major chemoautotrophic pathways as well as pathways for biosynthesis of vitamins, cofactors, and all 20 amino acids required by the clam.